Publications

Found 48 results
Filters: Keyword is Biological Transport  [Clear All Filters]
2004
Palmieri F (2004) The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Arch 447, 689-709
Fontanesi F, Palmieri L, Scarcia P, Lodi T, Donnini C, Limongelli A, Tiranti V, Zeviani M, Ferrero I & Viola AMaria (2004) Mutations in AAC2, equivalent to human adPEO-associated ANT1 mutations, lead to defective oxidative phosphorylation in Saccharomyces cerevisiae and affect mitochondrial DNA stability. Hum Mol Genet 13, 923-34
2001
Murphy MP, Leuenberger D, Curran SP, Oppliger W & Koehler CM (2001) The essential function of the small Tim proteins in the TIM22 import pathway does not depend on formation of the soluble 70-kilodalton complex. Mol Cell Biol 21, 6132-8
Dolce V, Fiermonte G, Runswick MJ, Palmieri F & Walker JE (2001) The human mitochondrial deoxynucleotide carrier and its role in the toxicity of nucleoside antivirals. Proc Natl Acad Sci U S A 98, 2284-8
Muratovska A, Lightowlers RN, Taylor RW, Turnbull DM, Smith RA, Wilce JA, Martin SW & Murphy MP (2001) Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease. Nucleic Acids Res 29, 1852-63
2000
Picon A, Kunji ERS, Lanfermeijer FC, Konings WN & Poolman B (2000) Specificity mutants of the binding protein of the oligopeptide transport system of Lactococcus lactis. J Bacteriol 182, 1600-8
1999
Korge P & Weiss JN (1999) Thapsigargin directly induces the mitochondrial permeability transition. Eur J Biochem 265, 273-80
1998
Detmers FJ, Kunji ERS, Lanfermeijer FC, Poolman B & Konings WN (1998) Kinetics and specificity of peptide uptake by the oligopeptide transport system of Lactococcus lactis. Biochemistry 37, 16671-9
1996
Mierau I, Kunji ERS, Leenhouts KJ, Hellendoorn MA, Haandrikman AJ, Poolman B, Konings WN, Venema G & Kok J (1996) Multiple-peptidase mutants of Lactococcus lactis are severely impaired in their ability to grow in milk. J Bacteriol 178, 2794-803
Kunji ERS, Mierau I, Hagting A, Poolman B & Konings WN (1996) The proteolytic systems of lactic acid bacteria. Antonie Van Leeuwenhoek 70, 187-221
1995
Juillard V, Laan H, Kunji ERS, Jeronimus-Stratingh CM, Bruins AP & Konings WN (1995) The extracellular PI-type proteinase of Lactococcus lactis hydrolyzes beta-casein into more than one hundred different oligopeptides. J Bacteriol 177, 3472-8
Poolman B, Kunji ERS, Hagting A, Juillard V & Konings WN (1995) The proteolytic pathway of Lactococcus lactis. Soc Appl Bacteriol Symp Ser 24, 65S-75S
Foucaud C, Kunji ERS, Hagting A, Richard J, Konings WN, Desmazeaud M & Poolman B (1995) Specificity of peptide transport systems in Lactococcus lactis: evidence for a third system which transports hydrophobic di- and tripeptides. J Bacteriol 177, 4652-7
Kunji ERS, Hagting A, De Vries CJ, Juillard V, Haandrikman AJ, Poolman B & Konings WN (1995) Transport of beta-casein-derived peptides by the oligopeptide transport system is a crucial step in the proteolytic pathway of Lactococcus lactis. J Biol Chem 270, 1569-74
1993
Tynkkynen S, Buist G, Kunji ERS, Kok J, Poolman B, Venema G & Haandrikman A (1993) Genetic and biochemical characterization of the oligopeptide transport system of Lactococcus lactis. J Bacteriol 175, 7523-32
1987
DiMauro S, Bonilla E, Zeviani M, Servidei S, DeVivo DC & Schon EA (1987) Mitochondrial myopathies. J Inherit Metab Dis 10 Suppl 1, 113-28
1984
Salviati G, Betto R, D Betto D & Zeviani M (1984) Myofibrillar-protein isoforms and sarcoplasmic-reticulum Ca2+-transport activity of single human muscle fibres. Biochem J 224, 215-25

Pages