Hydroxylated Rotenoids Selectively Inhibit the Proliferation of Prostate Cancer Cells.

TitleHydroxylated Rotenoids Selectively Inhibit the Proliferation of Prostate Cancer Cells.
Publication TypeJournal Article
Year of Publication2020
AuthorsRussell, DA, Bridges, HR, Serreli, R, Kidd, SL, Mateu, N, Osberger, TJ, Sore, HF, Hirst, J, Spring, DR
JournalJ Nat Prod
Date Published2020 May 27

Prostate cancer is one of the leading causes of cancer-related death in men. The identification of new therapeutics to selectively target prostate cancer cells is therefore vital. Recently, the rotenoids rotenone () and deguelin () were reported to selectively kill prostate cancer cells, and the inhibition of mitochondrial complex I was established as essential to their mechanism of action. However, these hydrophobic rotenoids readily cross the blood-brain barrier and induce symptoms characteristic of Parkinson's disease in animals. Since hydroxylated derivatives of and are more hydrophilic and less likely to readily cross the blood-brain barrier, 29 natural and unnatural hydroxylated derivatives of and were synthesized for evaluation. The inhibitory potency (IC) of each derivative against complex I was measured, and its hydrophobicity (SlogP) predicted. Amorphigenin (), dalpanol (), dihydroamorphigenin (), and amorphigenol () were selected and evaluated in cell-based assays using C4-2 and C4-2B prostate cancer cells alongside control PNT2 prostate cells. These rotenoids inhibit complex I in cells, decrease oxygen consumption, and selectively inhibit the proliferation of prostate cancer cells, leaving control cells unaffected. The greatest selectivity and antiproliferative effects were observed with and . The data highlight these molecules as promising therapeutic candidates for further evaluation in prostate cancer models.

Alternate JournalJ. Nat. Prod.
Citation Key10.1021/acs.jnatprod.9b01224
PubMed ID32459967