Superoxide activates mitochondrial uncoupling proteins.

TitleSuperoxide activates mitochondrial uncoupling proteins.
Publication TypeJournal Article
Year of Publication2002
AuthorsEchtay, KS, Roussel, D, St-Pierre, J, Jekabsons, MB, Cadenas, S, Stuart, JA, Harper, JA, Roebuck, SJ, Morrison, A, Pickering, S, Clapham, JC, Brand, MD
Date Published2002 Jan 03
KeywordsAdipose Tissue, Brown, Animals, Carrier Proteins, Food Deprivation, Gene Deletion, Glyburide, Hot Temperature, Intracellular Membranes, Ion Channels, Islets of Langerhans, Kidney, Liver, Membrane Potentials, Membrane Proteins, Membrane Transport Proteins, Mice, Mice, Knockout, Mitochondria, Mitochondrial Proteins, Muscle, Skeletal, Myocardium, Proteins, Protons, Rats, Reactive Oxygen Species, Saccharomyces cerevisiae, Spleen, Superoxides, Uncoupling Agents, Uncoupling Protein 1, Uncoupling Protein 2, Uncoupling Protein 3

Uncoupling protein 1 (UCP1) diverts energy from ATP synthesis to thermogenesis in the mitochondria of brown adipose tissue by catalysing a regulated leak of protons across the inner membrane. The functions of its homologues, UCP2 and UCP3, in other tissues are debated. UCP2 and UCP3 are present at much lower abundance than UCP1, and the uncoupling with which they are associated is not significantly thermogenic. Mild uncoupling would, however, decrease the mitochondrial production of reactive oxygen species, which are important mediators of oxidative damage. Here we show that superoxide increases mitochondrial proton conductance through effects on UCP1, UCP2 and UCP3. Superoxide-induced uncoupling requires fatty acids and is inhibited by purine nucleotides. It correlates with the tissue expression of UCPs, appears in mitochondria from yeast expressing UCP1, and is absent in skeletal muscle mitochondria from UCP3 knockout mice. Our findings indicate that the interaction of superoxide with UCPs may be a mechanism for decreasing the concentrations of reactive oxygen species inside mitochondria.

Alternate JournalNature
Citation Key10.1038/415096a
PubMed ID11780125