Useful resources for Schools and Colleges
Future content will include:
- Video games that demonstrate the effects of mitochondrial diseases
- A protein analysis program (Pymol), along with guidance on its use
Current content:
- Videos about mitochondria
- Posters explaining mitochondrial diseases - causes, effects and principles of inheritance through mitochondrial DNA (mtDNA)
- Fiendish sequencing puzzles - very useful in explaining the methodology involved in DNA sequencing
- Activity Book
Schools
The MBU has an active engagement programme with local, national and sometimes international schools. This involves visits to the schools by MBU scientists and also the hosting of visits to the Unit by school students.
A number of our scientists have represented the Unit at careers carousels and other events organised by Form the Future - is an organisation that facilitates such events.
We also offer a Biology Masterclass (approximately 2 hours' duration) aimed at Year 13 A Level students. This Masterclass is split into three sections:
Videos about mitochondria
Posters
The attached posters explain:
- Biological samples and how we view them
- DNA, protein and mitochondrial DNA
- What mitochondria do, and the cause, effect and principles of inheritance of mitochondrial disease
- Protein structure
- The battle for the mitochondrion!
Fiendish puzzles
Fnidnig teh msitkaes ni DNA taht casue mitochondrial diseases
So - what do word puzzles have to do with genetic disease?
We each have about 3,000,000,000 billion bases of DNA – that’s the A’s, T’s, G’s and C’s – strung together in the famous double helix. But that DNA isn’t all as one long piece, it is divided into 23 pairs of chromosomes. One half of our chromosomes we get from out mother, and the other half from our father.
Our chromosomes contain about 20,000 genes. We all have small variations in our DNA that make us unique – these variations are how evolution can work – But sometimes these variations can stop a gene from producing a protein that works. It’s like how changing one letter in a sentence can change it’s meaning:
There’s a fly in my soup versus There’s a fly in my soap
If a change occurs in an important gene, then it can lead to genetic disease. When we sequence the DNA of a patient with genetic disease, we hope we can find the gene with the change that caused the disease by comparing it to the DNA of people without genetic disease.
But DNA is too long to sequence all in one go. Instead we sequence it in short pieces of up to 500 bases long, and then stick all the billions of pieces back together again! We do this by using computers that find all the over-lapping pieces. But you’re going to do it by hand. You’ll also discover that it’s not always easy, because sometimes DNA has repeated patterns. And sometimes the sequencing machines make mistakes too! So we need to overlap lots of fragments to make sure we’ve found a real change in the patient’s DNA.
Have a go - attached are a few sequencing puzzles in .pdf form. You will need to download them and cut them up into strips (the cutting lines are marked), then assemble them in the correct order.
MRC Cambridge Activity Book
This activity book (attached below) is for people of all ages to explore the variety of MRC-funded work that takes place in Cambridge.
For further information about any of these activities, or to arrange a school visit or event, please use the Communications and Public Engagement email address found on our contacts page: http://www.mrc-mbu.cam.ac.uk/contact-us