

Without this tiny transport protein we'd be unable to get any ADP to make ATP, or to export the ATP that had been made!

Amino Acids:	298
Mutations:	115
Publications:	913
Chromosome:	4
MBU Rating:	66

Also known as the aspartate-glutamate carrier, this mitochondrial transporter can be turned on/off with calcium!

Amino Acids:	678
Mutations:	377
Publications:	800
Chromosome:	7
MBU Rating:	54

Mutations:	43
Publications:	283
Chromosome:	6
MBU Rating:	45

Superoxide

SOD2, or superoxide dismutase, is responsible for removing dangerous reactive oxygen species. Each one has four subunits.

Amino Acids:	222
Mutations:	189
Publications:	4,995
Chromosome:	6
MBU Rating:	29

1 1

| |

Peroxidase 1

Glutathione peroxidase, or GPx1, removes dangerous hydrogen peroxide (bleach!) by reducing it to water.

Amino Acids:	203
Mutations:	124
Publications:	2,741
Chromosome:	3
MBU Rating:	11

OPA1

OPA1 plays a key role in the regulation of mitochondrial fission (when they divide) and fusion (when two mitos join together)

Amino Acids:	960
Mutations:	534
Publications:	1,583
Chromosome:	3
MBU Rating:	52

Amino Acids:	736
Mutations:	220
Publications:	2,638
Chromosome:	12
MBU Rating:	58

Cytochrome C

Each molecule of cytochrome C can carry one electron from complex III to complex IV in the electron transport chain.

Amino Acids:	325
Mutations:	29
Publications:	55,275
Chromosome:	7
MBU Rating:	48

TWINKLE

Six of these subunits make up one TWINKLE helicase, which uses energy from ATP to unwind mtDNA ready for it to be copied.

Amino Acids:	684
Mutations:	329
Publications:	166
Chromosome:	10
MBU Rating:	72

Mitochondrial DNA polymerase is made up of three subunits, one of which is PoIG, which does all the work to copy mtDNA!

Amino Acids:	1,239
Mutations:	658
Publications:	1,508
Chromosome:	15
MBU Rating:	59

Transcription Factor

TFAM – mitochondrial transcription factor A – is needed in order to both read and replicate genes on mtDNA.

Amino Acids:	246
Mutations:	137
Publications:	1,752
Chromosome:	10
MBU Rating:	72

PINK1 tags mitochondria that are damaged and need to be removed by adding a phosphate group to the protein Parkin.

Amino Acids:	581
Mutations:	364
Publications:	2,763
Chromosome:	1
MBU Rating:	70

Parkin

When phosphorylated by PINK1, Parkin tags damaged mitochondria. It is often mutated in Parkinson's disease.

Amino Acids:	465
Mutations:	350
Publications:	9,246
Chromosome:	6
MBU Rating:	65

destruction - unless they are extremely damaged.

Amino Acids:	239
Mutations:	72
Publications:	69,473
Chromosome:	18
MBU Rating:	23
Mbo Ruting.	20

ND5 is one of the 44 complex I subunits! It sits in the inner membrane.

Amino Acids:	603
Mutations:	421
Publications:	12,932
Chromosome:	mtDNA
MBU Rating:	30

One of 44 complex I subunits! NDUFV1 has the flavin which accepts the electron from NADH.

Amino Acids:	434
Mutations:	315
Publications:	12,932
Chromosome:	11
MBU Rating:	19

MBU Rating:

name is succinate dehydrogenase!

Amino Acids:	169
Mutations:	118
Publications:	20,646
Chromosome:	1
MBU Rating:	13

Cytochome B is part of mitochondrial complex III. It binds two heme groups!

380
410
12,276
mtDNA
30

The Rieske protein is the part of complex III which transfers one electron to cytochrome c.

Amino Acids:	274
Mutations:	89
Publications:	44
Chromosome:	19
MBU Rating:	17

Amino Acids:	513
Mutations:	294
Publications:	10,039
Chromosome:	mtDNA
MBU Rating:	21

Cytochrome C Oxidase,

COX6B1 is a subunit of mitochondrial complex IV. The full name of complex IV is cytochrome C oxidase!

Amino Acids:	86
Mutations:	43
Publications:	26,663
Chromosome:	19
MBU Rating:	14

ATP Synthase α

Each ATP synthase has three α subunits which bind ADP, the nucleotide needed to make ATP.

Amino Acids:	553
Mutations:	217
Publications:	6,968
Chromosome:	18
MBU Rating:	45

ATP Synthase C

The c subunits of ATP synthase form the membrane half of the complex, known as Fo.

Amino Acids:	136
Mutations:	57
Publications:	6,968
Chromosome:	17
MBU Rating:	37

SSBP1 binds single stranded mtDNA to protect it during DNA replication.

148
66
143
7
25

Isocitrate Dehydrogenase

IDH2 is an enzyme that helps to break down glucose from food in order to power the electron transport chain.

Amino Acids:	452
Mutations:	209
Publications:	1,978
Chromosome:	15
MBU Rating:	19

Fumarase	Fumarate Hydratase
	Matrix Matrix PDB: 3E04

Fumarase is a key enzyme involved in the citric acid cycle, which occurs in the mitochondrial matrix.

Amino Acids:	510
Mutations:	256
Publications:	944
Chromosome:	1
MBU Rating:	34

MDH2

Malate Dehydrogenase 2

MDH2 is an enzyme in the citric acid cycle that converts malate into oxaloacetate.

Amino Acids:	338
Mutations:	221
Publications:	70
Chromosome:	7
MBU Rating:	12

MTOTrumps

Shuffle and deal the cards face down. Each player picks up their cards in a stack, so that they can see their **top card only**.

The player left of the dealer chooses and calls out their **best stat** (e.g. "Chromosome -10"). The other players look to see if their cards beats this stat. If there is a tie between multiple people, the card with, the highest amino acid number wins.

The person with the **highest number** wins the top card from each player and adds them to the back of their stack. They then choose the category for the next card.

The winner is the person who collects all the cards!

UNIVERSITY OF CAMBRIDGE

MTOTrumps

Proteins have many different structures and functions! The pictures on the cards are often the **real structures** for these proteins, and will have a 'PDB' number where they can be found! Some are **computer models** of that protein, and there will be a note saying it is a model.

Mitochondria have **proteins everywhere**, so if you look at the icon in the top right of your card you can see where inside a mitochondrion a protein can be found.

MTOTrumps

MTOTrumps

MTOTrumps

UNIVERSITY OF CAMBRIDGE

The MRC Mitochondrial Biology Unit (MBU) is dedicated to the **study of mitochondria**, and the role they play in **disease**.

Due to the many essential functions of mitochondria, such as releasing energy from food, damaged mitochondria can cause disease. Many mitochondrial diseases are **life-long**, **difficult to diagnose**, and **incurable**. Mitochondria also play a role in diseases such as **cancer** and **dementia**. Through understanding how mitochondria work, we will be able to **better treat these diseases**.

MitoTrumps was developed by Alannah King. Thank you to the MBU Public Engagement Committee and the MBU for their contributions, and to Stewart Ashcroft-Quinn and Tyler Smyth for the inspiration!

КК

MRC

Mitochondrial Biology Unit

MTOTrumps

MRC Mitochondrial Biology Unit

КĶ

UNIVERSITY OF CAMBRIDGE

Amino Acid – The **building blocks** of proteins! This is the number of amino acids in the protein.

Mutations – This is the **number of different variants** of this protein across humans listed on gnomAD as of 10/01/21. Some of these cause diseases.

Publications – The **number of published scientific articles** on this protein, as of 10/01/22 on PubMed.

Chromosome – The chromosome that the gene for this protein is on. Some genes are on the mitochondrial DNA, mtDNA! For the 'Chromosome' stat, mtDNA proteins trump all others!

MBU Rating – We asked our scientists to **vote for their favourite proteins in this deck**! The MBU rating reflects the number of points a protein received.

UNIVERSITY OF

CAMBRIDGE

MRC Mitochondrial Biology Unit

Å