Michal Minczuk

Michal Minczuk

Programme Leader

Discovering the genetic links between mitochondrial dysfunction and human disease

In eukaryotic organisms almost all genetic information is encoded in DNA present in the nucleus of the cell, but a small DNA molecule inhabits mitochondria, cellular structures that provide energy from food for the cells to use. Mitochondrial DNA contains genes that are vital for the physiological functioning of the cell, and genetic defects causing dysfunction of mitochondrial DNA can lead to human diseases. We still do not know how mitochondrial genes work exactly.One of the ways to investigate the role of a gene, or to discover its biological function, it to change or disrupt DNA, and then to look for the effect on cultured cells, or on the whole organism. These methods of genetic modification are often powerful ways of studying disease genes encoded in the nucleus, but they cannot be applied to mammalian mitochondrial DNA. Also, many genes regulating mitochondrial function are still unknown. Therefore, our research goals are to identify new genes regulating mitochondria, define how these mitochondrial genes operate and to provide the technology to allow mammalian mitochondrial DNA to be modified genetically. It could be an invaluable way of understanding mitochondrial diseases and for advancing the quest for therapies.

Publication profile - Google Scholar

Research areas

Group Members


  • Pedro Guiomar
  • Christopher Powell
  • Lindsey van Haute

Post-graduate students

  • Christian Mutti
  • Pavel Nash
  • Petra Palenikova
  • Pedro Pinheiro